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H I G H L I G H T S

• We produce maps of PM2.5 for a twelve-year period of rapid change in East Asia.
• Unique temporal coverage enabled by synthetic training data for machine learning.
• PM2.5 peaked in 2013/14 and decreased steadily since with no region left behind.
• PM2.5 data reproduces surface network observations including extreme events.
• Data made available for public health and other applications.

A B S T R A C T

We construct a continuous 24-h daily fine particulate matter (PM2.5) record with 2 × 2 km2 resolution over eastern China, South Korea, and Japan for 2011–2022 by 
applying a random forest (RF) algorithm to aerosol optical depth (AOD) observations from the Geostationary Ocean Color Imager (GOCI) I and II satellite in-
struments. This record uniquely covers a 12-year period of rapid change in air quality in East Asia. The RF uses PM2.5 observations from the national surface networks 
as training data. PM2.5 network data starting in 2015 in South Korea are extended to pre-2015 with a RF trained on other air quality data available from the network 
including PM10. PM2.5 network data starting in 2014 in China are supplemented by pre-2014 data from the US embassy and consulates. Missing AODs in the GOCI 
data are gap-filled by a separate RF fit. We show that the resulting GOCI PM2.5 dataset is successful in reproducing the surface network observations including 
extreme events, and that the network data in the different countries are representative of population-weighted exposure. We find that PM2.5 peaked in 2014 (China) 
and 2013 (South Korea, Japan), and has been decreasing steadily since those respective years with no region left behind. We quantify the population in each country 
exposed to annual PM2.5 in excess of national ambient air quality standards and how this exposure evolves with time. The long record for the Seoul Metropolitan Area 
(SMA) shows a steady decrease from 2013 to 2022 that was not present in the first five years of AirKorea network PM2.5 measurements. Mapping of an extreme 
pollution event in Seoul with GOCI PM2.5 shows a predicted distribution indistinguishable from the dense urban network observations, while our previous 6 × 6 km2 

product smoothed local features. Our product should be useful for public health studies where long-term spatial continuity of PM2.5 information is essential.
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1. Introduction

Outdoor fine particulate matter (PM2.5, less than 2.5 μm in aero-
dynamic diameter) is a leading cause of morbidity and mortality, with 
exposure leading to 8.9 million deaths worldwide in 2015 (Burnett et al., 
2018; Dominici et al., 2006; Kioumourtzoglou et al., 2016; Wei et al., 
2019). East Asian countries experience particularly high concentrations 
of PM2.5, motivating new pollution regulations in China in 2013 and 
South Korea in 2017 (Chinese State Council, 2013; Joo, 2018). As a 
result, concentrations declined in the latter half of the 2010s 
(Pendergrass et al., 2022). However, the publicly available archive of 
PM2.5 measurements from national surface networks only started in 
2014 in China and in 2015 in South Korea, and they remain relatively 
sparse for public health applications. Here we use geostationary satellite 
observations of aerosol optical depth (AOD) from the Geostationary 
Ocean Color Imager (GOCI) I and II instruments, trained with surface 
PM2.5 data using a machine learning algorithm, to provide complete 
2011–2022 daily 24-h coverage of surface PM2.5 concentrations at 2 × 2 
km2 resolution for eastern China, South Korea, and Japan.

Satellite retrievals of AOD have long been used to expand surface 
PM2.5 coverage beyond that provided by network sites. Early applica-
tions used AOD/PM2.5 ratios computed with a chemical transport model 
(CTM) to infer surface PM2.5 from observed AOD (Liu et al., 2004; van 
Donkelaar et al., 2006; van Donkelaar et al., 2021) but this may be 
affected by CTM biases. More recent applications have used machine 
learning algorithms to train satellite AODs on PM2.5 network measure-
ments (Guo et al., 2021; Pendergrass et al., 2022; Wongnakae et al., 
2023). Commonly used machine learning algorithms include XGBoost 
and Random Forest (RF), both based on decision trees, and neural net-
works; precision tends to be similar across algorithms (Di et al., 2019; 
Kulkarni et al., 2022). RF approaches are widely used due to their 
explainability and consistently strong performance with minimal 
hyperparameter tuning (Breiman, 2001). We opt to use the RF approach 
because of its strong performance and because of its compatibility with 
explainable AI methods like SHapley Additive exPlanations (SHAP) 
analysis (Lundberg et al., 2020).

In East Asia, studies inferring PM2.5 from satellite AOD data have 
benefited from new geostationary instruments including GOCI 
(launched 2010), the Advanced Himawari Imager (AHI, launched 
2014), the Advanced Meteorological Imager (AMI, launched 2018), 
GOCI-II and GEMS (launched in 2020), which provide continuous 
hourly or subhourly measurements during daytime (Cho et al., 2023a; 
Choi et al., 2018; Kim et al., 2023; Lee et al., 2023; Lim et al., 2018). The 
RF method has been used to infer hourly PM2.5 from geostationary AOD 
(Cho et al., 2023b; Liu et al., 2022; Tan et al., 2023), but geostationary 
AOD also improves inference of 24-h mean PM2.5; Park et al. (2019)
found that an RF algorithm trained to predict PM2.5 from GOCI AOD 
outperformed an otherwise identical one trained on the MODIS 
low-earth orbit instrument. While recent work has made use of 
high-resolution low-earth orbit AOD products to infer surface PM2.5 (Bai 
et al., 2024; Wei et al., 2023), geostationary instruments offer a unique 
capacity for cloud-clearing at the daily scale because of multiple daily 
revisits. Our previous work (Pendergrass et al., 2022) used GOCI I ob-
servations to produce a continuous 24-h 6 × 6 km2 PM2.5 product for 
eastern China, South Korea and Japan for the network observation pe-
riods (starting in 2014 in China and 2015 in South Korea) and extending 
to 2019.

Here we use a continuous, gap-filled record of AOD retrieved from 
GOCI I and its successor GOCI II on a consistent 2 × 2 km2 grid to infer 
surface PM2.5 at 24-h temporal resolution from March 2011 through the 
end of 2022 for eastern China, Japan, and South Korea. We make use of 
an improved AOD gap-filling procedure by using a separate RF fit 
trained to reproduce AOD data. To provide continuity in training across 
the study domain from 2011 to present, we additionally develop and 
evaluate a virtual network PM2.5 record prior to 2015 in South Korea by 
training an RF on network observations of coarse particulate matter 

(PM10) and other air pollutants. In China, we make use of US embassy 
and consulate PM2.5 data to train the RF before 2014. By producing 
synthetic training data, we are able to produce a continuous dataset for 
the region starting in 2011 and covering an area of rapid change in PM2.5 
air quality. The resulting 24-h 2 × 2 km2 resolution 24-h GOCI PM2.5 
from March 1, 2011 through December 31, 2022 are made publicly 
available on DataVerse (https://doi.org/10.7910/DVN/0GO7BS).

2. Methods

Pendergrass et al. (2022) used GOCI I AOD observations to produce a 
continuous 24-h 6 × 6 km2 PM2.5 product for eastern China, South Korea 
and Japan for the surface network observation periods (starting in 2014 
in China, 2015 in South Korea, and 2011 in Japan) and extending to the 
end of 2019. It gap-filled missing GOCI I AOD data by blending a CTM 
simulation with statistical interpolation (inverse distance weighted 
means).

Here we improve on Pendergrass et al. (2022) in several major ways. 
First, we extend the AOD record using the GOCI II instrument to cover 
the 2011–2022 period, and replace the 6 × 6 km2 GOCI I AOD with a 2 
× 2 km2 GOCI I AOD retrieval (section 2.1). We replace the statistical 
AOD gap-filling method of Pendergrass et al. (2022) with an additional 
AOD RF fit (section 2.2). To avoid biased PM2.5 estimates in South Korea 
prior to the beginning of the AirKorea national network observations in 
2015, we use an additional RF to infer surface observations of PM2.5 in 
South Korea at the network sites using measurements of other air quality 
variables including PM10 starting from 2011 (section 2.3). In China, we 
avoid extrapolation bias by supplementing surface network data with 
data from the US embassy and consulates, which date from 2011. 
Finally, we train an RF on the gap-filled AOD and other predictor vari-
ables to construct a continuous 24-h 2 × 2 km2 PM2.5 product for China, 
South Korea, and Japan covering the 2011–2022 period (section 2.4), a 
period uniquely enabled by our creation of synthetic training data. In 
this work, as in our previous product, we focus on 24-h predictions of 
PM2.5 because public health datasets are at daily or coarser resolution, 
because the 8- or 10-h coverage of the GOCI I and II AOD products 
preclude a full hourly PM2.5 product, and because geostationary data is 
useful for cloud-clearing at 24-h temporal resolution. Table 1 lists the 
predictor variables for all of the RFs used in this work. We exclude 
latitude and longitude because their inclusion led to nonphysical strip-
ing in the inferred AOD and PM2.5 maps.

We evaluate how each RF performs and learns via a 10-fold cross-
validation procedure and Shapley analysis. The crossvalidation mea-
sures how well an RF can make predictions based on more limited 
training data. For each fold of the crossvalidation, we leave out a 
randomly selected 10% of sites entirely from training in each of the three 
countries analyzed. In this way, the crossvalidation measures the ability 
of the RF to generalize spatially to unseen sites. We chose this approach 
over leave-one-site-out crossvalidation for computational economy. As a 
sensitivity test, we compare ten-fold crossvalidation to leave-one-out 
crossvalidation for our RF-predicted PM2.5 in Japan only and find the 
results are similar between approaches (Fig. S1). We compare RF- 
predicted AOD and PM2.5 (24-h and annual) to the withheld observed 
AOD and PM2.5 using four metrics: the root mean square error (RMSE); 
the RMSE divided by mean observed value (relative RMSE, or RRMSE); 
the coefficient of determination (R2); and the mean bias computed by 
averaging the difference between predicted and observed values (MB). 
To determine the contributions of training variables to the overall RF 
estimate, we use the SHapley Additive exPlanations (SHAP) analysis as 
implemented by the TreeExplainer algorithm (Lundberg et al., 2020). 
This method allocates a SHAP value, in the same units as the target 
variable (μg m− 3 for PM2.5, unitless for AOD), to each predictor variable 
and can be interpreted as the importance of that variable to the trained 
RF algorithm. All RFs are produced using the Python module scikit-learn 
(Pedregosa et al., 2011).
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2.1. GOCI, GEOS-Chem, and PM2.5 input datasets

GOCI I and II AOD. GOCI I was launched in 2010 by the Korea 
Aerospace Research Institute (KARI) and recorded data every hour eight 
times daily at 0.5 × 0.5 km2 pixel resolution over eastern China, the 
Korean peninsula, and Japan (Choi et al., 2018) until it was shut down in 
early 2021. GOCI II, launched in February 2020, continues the GOCI 
mission with improved 0.25 × 0.25 km2 pixel resolution, four additional 
spectral bands, and ten times daily retrievals over an expanded daytime 
window (Lee et al., 2023). The Yonsei aerosol retrieval (YAER) algo-
rithm family computes AOD from GOCI measurements by aggregating 
the native GOCI pixels to improve accuracy and cloud clearing into a 6 
× 6 km2 AOD product for GOCI I (GOCI YAER v2; Choi et al., 2018) and 
a 2.5 × 2.5 km2 AOD product for GOCI-II (GOCI-II YAER; Lee et al., 
2023). Lee et al. (2017) showed that fewer GOCI I pixels could be 
aggregated to produce a higher resolution AOD product with a modest 
tradeoff in precision. In this work, we use their 2 × 2 km2 GOCI I AOD 
product (produced from 4 × 4 GOCI I pixels) which exhibits an R2 of 
0.825 relative to AERONET for 2016 as compared to 0.858 for the 
standard GOCI YAER v2 6 × 6 km2 AOD product (Lee et al., 2017).

To produce a continuous GOCI AOD training dataset, we first 
aggregate GOCI I AOD into an 8-h average (0:30–7:30 UTC) and GOCI II 
AOD into a 10-h average (23:15–8:15 UTC), representing the full daily 
records of each instrument, then regrid the 2.5 × 2.5 km2 GOCI II AOD 
to the 2 × 2 km2 GOCI I grid by bilinear interpolation. We use the GOCI I 
AOD for March 2011 through December 2020 and the GOCI II AOD for 
January 2021 through December 2022. We remove 1.7% of pixels in the 
GOCI II record with an AOD outside the range observed by GOCI I 
(− 0.05 to 3.6). The GOCI II AOD retrieval is biased low over land 
relative to AERONET while GOCI I shows no significant bias (Lee et al., 
2023). To avoid spurious trends in the inferred PM2.5, we incorporate 
relevant training data into the RF as described in Section 2.4.

Bias-corrected GEOS-Chem monthly mean AOD. Following Pendergrass 
et al. (2022), we use bias-corrected GEOS-Chem CTM AODs to blend 
with GOCI I and II AODs in the gap-filling RF. The GEOS-Chem AODs are 
monthly means from a simulation by Zhai et al. (2021) for 2016 in East 
Asia with 0.5◦ × 0.625◦ resolution. We bias-correct the GEOS-Chem 
AODs to match the annual mean GOCI I and II AODs on the 2 × 2 km2 

grid for each year in the 2011–2022 period. In this way, we obtain a 
spatial distribution of monthly mean bias-corrected GEOS-Chem AOD 
values. We use monthly mean GEOS-Chem AOD rather than daily model 
output to prevent the RF from imputing day-to-day model information.

Surface PM2.5 data. We use hourly PM2.5 data from operational air 
quality networks in eastern China, South Korea, and Japan, and average 
the data over 24 h and over the 2 × 2 km2 GOCI AOD grid to define 
targets for the RF algorithm. Data for eastern China are from the Na-
tional Environmental Monitoring Center (CNEMC; https://quotsoft.net 
/air/), with measurements in Beijing beginning in December 2013 and 
for the rest of the country in May 2014. Following Zhai et al. (2019) we 
remove values with more than 24 consecutive repeats in the hourly 
timeseries as likely in error. Data in China are supplemented by US 
embassy data in Beijing (beginning in March 2011) and US consulates 
data in Shanghai (beginning in December 2011) and Shenyang (January 
2013) (https://www.airnow.gov/international/us-embassies-and-cons 
ulates). These US embassy and consulates data have been used in pre-
vious air quality studies (K. Li et al., 2018; Pendergrass et al., 2019). 
Data for South Korea are from the AirKorea surface network (https:// 
www.airkorea.or.kr/), which added PM2.5 beginning in January 2015. 
Data for Japan are from the Japanese National Institute for Environ-
mental Studies (NIES) for 2011–2021 (https://tenbou.nies.go.jp/down 
load/) and for 2022 by the AEROS network (https://soramame.env. 
go.jp/download).

Table 1 
Random Forest predictor variables.a.

GOCI (gap-filled) and GEOS-Chem
GOCI I AOD 8-h average (0:30–7:30 UTC) at 550 nm wavelength (2011–2020)
GOCI II AOD 10-h average (23:15–8:15 UTC) at 550 nm wavelength (2021–2022)
Gaspari-Cohn missingness factor αb

Bias-corrected GEOS-Chem monthly mean AODc

Meteorologyd

Boundary layer height (m)†

10-m meridional wind (m s− 1)*
10-m zonal wind (m s− 1)*
2-m temperature (K)*
2-m relative humiditye (%)*
Sea-level pressure (Pa)†

KORUSv5 emissionsf

NOx (molec m− 2 s− 1)
SO2 (molec m− 2 s− 1)
NH3 (molec m− 2 s− 1)

Land use
Land cover type (cropland, urban, rural)g

Population densityh

Elevationi

Normalized Difference Vegetation Index (NDVI)j

Metadata
Country categorical variablesk

Day of year
Year

AirKorea surface air quality datal

CO (ppm)
NO2 (ppm)
O3 (ppm)
SO2 (ppm)
PM10 (μg m− 3)
Yellow dust categorical variable (T/F)

a These predictor variables are used for three separate RF fits: (1) GOCI PM2.5, 
(2) imputing pre-2015 PM2.5 at AirKorea sites from PM10 and other predictors, 
and (3) gap-filling GOCI AOD. Unless otherwise noted, the data are used in all 
three RFs and are mapped onto the 2 × 2 km2 GOCI grid cells.

b Weighting factor with a value of 1 if AOD is retrieved successfully at least 
once in a given day in a given 2 × 2 km2 grid cell and descending to 0 as distance 
to the nearest successful retrieval increases. Not used to in the GOCI AOD gap- 
filling RF. See section 2.2.

c Simulation from Zhai et al. (2021) at 0.5◦ × 0.625◦ resolution and corrected 
to annual mean GOCI observations on the 2 × 2 km2 grid.

d Meteorological data from either the ECMWF hourly 9 × 9 km2 resolution 
ERA5-Land replay of the ERA5 global reanalysis (denoted *) or hourly 30 × 30 
km2 from ERA5 (†), interpolated bilinearly to the GOCI grid and averaged over 
24 h (Hersbach et al., 2020; Muñoz-Sabater et al., 2021). For coastal pixels 
missing from the ERA5-Land data, we impute values from ERA5.

e Inferred from temperature and dewpoint using the August-Roche-Magnus 
approximation (Alduchov and Eskridge, 1996).

f 2015 emissions for East Asia on a 0.1◦ × 0.1◦ grid (Woo et al., 2020).
g Land cover data at 300 m resolution for 2015 is obtained from the from the 

PROBA-Vegetation (PROBA-V) and Sentinel-3 OLCI (S3 OLCI) time series (https 
://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover? 
tab=overview; CDS, 2019). We aggregate the data to one of three categories 
based on the most prevalent land cover type within a 2 × 2 km2 GOCI grid cell: 
urban areas, cropland (irrigated, rainfed, and mosaic but majority cropland), 
and rural (all other non-water pixels with minimal human modification).

h 2015 population density at 30 arc second resolution from the Gridded 
Population of the World v4.11 dataset (CIESIN, 2018).

i Elevation from the global multi-resolution terrain elevation data 2010 digital 
elevation model (GMTED2010), corrected and aggregated to 0.0625◦ resolution 
by the Tropospheric Emission Monitoring Internet Service (https://www.temis. 
nl/data/gmted2010/index.php; Danielson and Gesch, 2011).

j Daily Normalized Difference Vegetation Index (NDVI) derived from the 
NOAA Climate Data Record (CDR) of Advanced Very High Resolution Radiom-
eter (AVHRR) Surface Reflectance and reported at 0.05◦ × 0.05◦ resolution 
(Vermote, 2019). A small number of NDVI pixels are missing, which are imputed 
by first looking for a successful retrieval within two weeks of the day in question 
and if that fails by inverse distance weighting.

k Three variables that, for each of eastern China, South Korea, and Japan, have 
value 1 if a grid cell is within those national borders and 0 otherwise.

l Used as input in the pre-2015 AirKorea PM2.5 RF. Yellow dust variable is true 
if a dust event (due to transport from China/Mongolia) is observed at a given site 
that day.
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2.2. Gap-filled AOD and AOD missingness metric

The GOCI AOD records have gaps from clouds, snow cover, and other 
causes. Following Di et al. (2019), we perform gap-filling by using a 
separate GOCI AOD RF fit trained on the predictor variables of Table 1
except GOCI I and II AOD (the target variables in this case), the 
Gaspari-Cohn factor α (which has value 1 for all successful AOD re-
trievals), and the AirKorea surface air quality data. Because of the size of 
the AOD gap-filling problem, we use a separate RF for each year of data 
for computational economy. Training the GOCI AOD RF with annually 
disaggregated input data also avoids bias from gap-filling GOCI I based 
on information from GOCI II and vice versa. As shown in Fig. 1, we find 
using a ten-fold crossvalidation that our GOCI AOD RF explains 91% of 
24-h variability (R2 = 0.91; annual R2 = 0.96) with no significant mean 
bias. Table S1 disaggregates accuracy metrics by country, showing 
similar results for each country. Our approach here improves on the 
statistical gap-filling method used in Pendergrass et al. (2022) which led 
to smooth AOD interpolation over large missing areas which may have 
been unphysical. To understand the variables driving the gap-filling 
prediction, we perform a SHAP analysis (lower panel) for a random 
sample of 0.1% of AOD data for 2016. NDVI is the most important 
predictor, perhaps because NDVI is predictive of AOD biases in both the 
GOCI I and II products (Choi et al., 2018; Lee et al., 2023), followed by 
GEOS-Chem modeled AOD and the six meteorological input variables; 
2-m temperature and day of year are likely metrics for the seasonal 
variability of AOD.

The GOCI AOD gaps are non-random as they result from specific 
conditions that would not be part of the training dataset. However, 
Brokamp et al. (2018) found that when inferring PM2.5 from AOD the 

non-randomness of AOD retrieval failure could be exploited to improve 
PM2.5 predictions. Following Pendergrass et al. (2022), we compute an 
AOD missingness factor α that takes on a value of 1 if AOD is retrieved 
successfully at least once in a given day in a given grid cell and 
descending to 0 as distance to the nearest successful retrieval increases. 
We compute α with the Gaspari-Cohn function, a polynomial with a 
single radial argument r that takes on a maximum value of 1 for r = 0 
and a minimum value of 0 for r ≥ 2 (Gaspari and Cohn, 1999). We 
obtain r for a given grid cell and day by normalizing the distance from 
the grid cell to that of the nearest AOD retrieval against an empirically 
determined spatial correlation length scale ranging from 110 km to 170 
km across the domain (Pendergrass et al., 2022). By passing the 
Gaspari-Cohn factor α to the GOCI PM2.5 RF, we allow the algorithm to 
learn the optimal correction strategy in cases of AOD retrieval failure.

2.3. Inferring South Korea PM2.5 before 2015

Prior to the January 2015 addition of PM2.5 measurements, the 
AirKorea surface network measured CO, O3, NO2, SO2, and PM10 con-
centrations. Many sites also recorded events of “yellow dust” trans-
ported from deserts in Mongolia and northern China (categorical true/ 
false variable). We train a separate AirKorea PM2.5 RF on the 2015–2020 
data, with all predictor variables in Table 1 except year and country 
categorical variables, to predict 24-h 2011–2014 PM2.5 at AirKorea sites. 
Fig. 2 evaluates the ability of the AirKorea PM2.5 RF product by its ability 
to match observed PM2.5 in the 2015–2020 period. We find using a ten- 
fold crossvalidation that the AirKorea PM2.5 RF is able to predict 88% of 
24-h PM2.5 variability in the 2015–2020 record with no significant bias.

To independently evaluate the AirKorea PM2.5 RF for the pre-2015 

Fig. 1. Evaluation of the GOCI AOD RF predictions. The top panels evaluate the GOCI AOD RF predictions in the 2011-22 training period at grid cells withheld 
entirely from training in a ten-fold crossvalidation procedure, aggregated at (a) 24-h and (b) annual resolution. Results are shown as two-dimensional histograms 
where pixel color corresponds to the count of observation/prediction correspondences within the corresponding bin, with statistics inset and the identity line shown 
in black. The bottom panel shows the top ten predictors of AOD ranked by importance by the SHAP analysis. Predictor variable contributions are shown by mean 
absolute SHAP values and standard deviations. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.)
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period, we use 2011–2014 hourly PM2.5 data collected at 25 sites in the 
city of Seoul by the Seoul Research Institute of Public Health and 
Environment (NIER, 2022) and select sites that are collocated with 
AirKorea sites within a 2 × 2 km2 GOCI grid cell (20 sites). We find that 
the AirKorea PM2.5 RF reproduces successfully the 2011–2014 city of 
Seoul data (Fig. 2), with statistics similar to the 2015–2020 cross-
validation. The annual R2 is weak but this can be explained by the small 
sample size and small dynamic range. The most important predictor 
variable by far is PM10, followed by CO and relative humidity. Fig. 3
shows how the AirKorea PM2.5 RF maps 2011–2014 PM10 data to infer 
PM2.5.

2.4. RF inference of PM2.5 from GOCI AOD

After producing a gap-filled AOD dataset with the GOCI AOD RF and 
a 2011–2014 PM2.5 target dataset for South Korea with the AirKorea 
PM2.5 RF, we can infer continuous 24-h 2011–2022 PM2.5 in the study 
domain at 2 × 2 km2 resolution. We train a GOCI PM2.5 RF on all pre-
dictor variables in Table 1 for which we have gap-free coverage. The 
GOCI PM2.5 RF includes as its target all PM2.5 measurements from na-
tional networks, supplemented by PM2.5 from the US embassy and 

consulates in China and by the pre-2015 PM2.5 inferred in South Korea 
by the AirKorea PM2.5 RF. We exclude latitude and longitude because 
their inclusion led to nonphysical striping in the inferred AOD and PM2.5 
spatial distributions, while we find that land use variables and emissions 
datasets lead to plausible spatial patterns in predicted PM2.5.

We find that using year as a predictor variable substantially improves 
the GOCI PM2.5 RF fit, as its inclusion avoids an artificially large drop in 
PM2.5 concentrations from the 2020 to 2021–2022 period, correspond-
ing with the switch from the GOCI I instrument to GOCI II (section 2.1). 
However, in China prior to the 2014 start of surface network data, the 
use of year as a predictor is problematic because in that period PM2.5 is 
only available from the US embassy and consulates which is too sparse. 
To solve this problem, we train a separate China-rebalanced GOCI PM2.5 
RF without year as a covariate and stopping in 2020 to avoid the GOCI II 
bias. In the China-rebalanced GOCI PM2.5 RF, we also apply training 
data weights to increase the penalty to the RF if the US embassy and 
consulate PM2.5 are poorly modeled prior to 2014; this China- 
rebalanced RF ensures that errors in every country and every year are 
equally weighted. In the future this approach could be extended to 
weight observations by other criteria such as monitor accuracy and 
representativeness for a given region. We use the output of the China- 

Fig. 2. Evaluation of the AirKorea PM2.5 RF predictions. The top panels evaluate the AirKorea PM2.5 RF predictions in the 2015–2020 training period at grid cells 
withheld entirely from training in a ten-fold crossvalidation procedure, aggregated at (a) 24-h and (b) annual resolution. Middle panels show an independent 
evaluation with observed 2011–2014 PM2.5 from the Seoul Research Institute surface network in the city of Seoul, selecting the 20 sites that are collocated with 
AirKorea sites on the 2 × 2 km2 GOCI grid. Panels (a–d) show two-dimensional histograms where pixel color corresponds to the count of observation/prediction 
correspondences within the corresponding bin, with statistics inset and the identity line shown in black. The bottom panel shows the top ten predictors of AirKorea 
PM2.5 ranked by importance by the SHAP analysis. Predictor variable contributions are shown by mean absolute SHAP values and standard deviations. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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rebalanced GOCI PM2.5 RF to overwrite the GOCI PM2.5 RF output prior 
to May 2014 in China. While studies using AOD/PM2.5 ratios computed 
with a CTM have been able to infer PM2.5 before surface network 
availability (van Donkelaar et al., 2021), the results are subject to CTM 
errors.

Fig. 4 compares 24-h and annual mean PM2.5 network observations 

to predictions from the GOCI PM2.5 RF for sites in 2 × 2 km2 grid cells 
withheld from training. Annual mean values are obtained by averaging 
the 24-h predictions. Low values are mainly from Japan. We find using a 
ten-fold crossvalidation that our prediction captures 86% of the 
observed 24-h variance (R2 = 0.86) and 95% of annual (R2 = 0.95). 
Overall mean bias is only 0.26 μg m− 3 but there are tail biases discussed 

Fig. 3. 2011-14 mean observed PM10 and inferred PM2.5 at AirKorea sites. The AirKorea PM2.5 RF is trained on data in Table 1 and its Shapley analysis is in Fig. 2.

Fig. 4. Evaluation of the GOCI PM2.5 RF predictions. The top panels evaluate the GOCI PM2.5 RF predictions in the 2011–2022 training period at grid cells withheld 
entirely from training in a ten-fold crossvalidation procedure, aggregated at (a) 24-h and (b) annual resolution. The panels show two-dimensional histograms where 
pixel color corresponds to the count of observation/prediction correspondences within the corresponding bin, with statistics inset and the identity line shown in 
black. The bottom panel shows the top ten predictors of GOCI PM2.5 ranked by importance by the SHAP analysis. Predictor variable contributions are shown by mean 
absolute SHAP values and standard deviations. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.)
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later in this section. Applying the SHAP analysis to a random sample of 
1% of the training data, we find that whether a grid cell is located in 
China is the most important predictor; this presumably serves as a proxy 
for the different vertical distribution of aerosols in the column relative to 
South Korea and Japan and also reflects the large dynamic range of 
PM2.5 in China. Boundary layer height and AOD are the most important 
physical predictors, as would be expected, and this is also found when 
we apply the SHAP analysis to individual countries and individual years. 
The Gaspari-Cohn factor α is especially important in Japan, which may 
be due to large areas of AOD retrieval failures in winter in that country 
(Pendergrass et al., 2022). Table S1 disaggregates GOCI PM2.5 RF per-
formance by country; we find unitless accuracy metrics (R2, RRMSE) in 
each country resemble overall statistics though annual R2 in Japan and 
South Korea are smaller due to a narrow dynamic range.

Fig. 5 shows the performance of the GOCI PM2.5 product in the high 
tail of the distribution which is of particular interest for air pollution 
exposure but is notoriously difficult for RF algorithms to fit (Zhang and 
Lu, 2012; Pendergrass et al., 2022). Here, perhaps due to the very large 
training set, we find that the RF extends the successful fit to the high tail. 
Averaging data into bins each containing 0.1% of ordered observations, 
we find that the observed 24-h 99th percentile of 129 μg m− 3 is 
underestimated by 13.5% (annual by 7.6%) in the corresponding GOCI 
PM2.5 predictions. The observed 24-h 99.9th percentile of 319 μg m− 3 is 
underestimated by GOCI PM2.5 by 26.5% (annual by 21.0%). These are 
relatively good RF performances for such high extremes.

3. Results and discussion

Here we present features and insights from our spatially and 
temporally continuous PM2.5 product generated from the GOCI AOD 
data from March 2011 to December 2022 with 2 × 2 km2 spatial reso-
lution and 24-h temporal resolution. We refer to this product as GOCI 
PM2.5 in what follows. Results for annual data are presented starting in 
2012 as the first full calendar year of data.

Fig. 6 (top row) shows gap-filled GOCI AODs in 2012, 2017, and 
2022. AOD declined steadily in East Asia over the lifetime of the GOCI I 
instrument (2011–2020) and drops sharply in the transition to GOCI II 
(2021–2022) but this is due partly to a low bias in GOCI II AOD. The 
middle row shows the PM2.5 network data, highlighting the spatial 
limitations as well as the temporal limitations before 2015. The bottom 
row shows our GOCI PM2.5 product, highlighting the spatial and tem-
poral continuity over the period. The bias between GOCI I and II does 
not affect our GOCI PM2.5 product because the RF is given information to 
fit the GOCI data for individual years. The GOCI PM2.5 product shows 
high concentrations at the northeastern tip of China where there are no 
surface network data. These high concentrations occur in winter and 
early spring and are possibly driven by residential heating combined 
with shallow mixing depths.

Fig. 7 shows long-term trends of annual GOCI PM2.5 for each country 
with averaging weighted by area, population, and land type (Table 1). 
Also shown are the trends from the PM2.5 networks, including pre-2015 

data for Korea from our RF fit of other network data (Section 2.3). The 
GOCI PM2.5 trends for the population-weighted average mirror the 
network trends and extrapolate them to before the start of the records. 
Peak concentrations were in 2014 (China) and 2013 (South Korea, 
Japan) and have been decreasing steadily since. The anomalous peak in 
South Korea PM2.5 in 2019 is driven in part by unfavorable winter 
meteorological conditions (Cha et al., 2023). We find no COVID-19 
anomaly in 2020, except perhaps in South Korea, possibly because 
emission decreases were offset by increase in oxidants producing sec-
ondary aerosol (Chang et al., 2020; Huang et al., 2021; Yang et al., 
2022). We also see a narrowing spread with time across land use types 
and averaging method (areal or population-weighted), consistent with 
more rapid improvements in polluted urban areas.

Fig. 8 compares our GOCI PM2.5 product for Beijing to the US em-
bassy observations going back to 2012, and places them in the context of 
PM2.5 concentrations in the broader city. GOCI PM2.5 tracks the obser-
vations at the US embassy well, peaking in 2013–2014 and then rapidly 
decreasing, a pattern consistent with the 2012-14 increase in PM2.5 in 
East China shown in Fig. 7. From the GOCI PM2.5 map we see that the US 
embassy was in a particularly polluted location in Beijing during the 
early part of the record but became more typical of the population- 
weighted city average after 2015. Improvements in PM2.5 air quality 
in Beijing have been relatively greater than in other urban areas (Zhai 
et al., 2019), as is apparent from Fig. 6. In Fig. S2, we evaluate the 
performance of our GOCI PM2.5 product for a 1-week extreme Beijing 
haze event in January 2013 and find good agreement with the embassy 
site, with peak 24-h concentrations of 386 μg m− 3 on 23 January 
underestimated by 9.7%.

The long-term record produced in this work provides improved local 
information on 2011–2022 trends. Fig. 9 shows trends in annual mean 
PM2.5 concentrations in South Korea derived from a linear regression 
applied to the annual GOCI PM2.5 in each 2 × 2 km2 grid cell, as well as 
monthly trends in Seoul/Incheon starting in March 2011. The first five 
years of AirKorea PM2.5 records (2015–19) showed no decrease in the 
Seoul metropolitan area (SMA) despite local emissions controls as well 
as controls upwind in China, and an increase in winter (Pendergrass 
et al., 2022). However, the 2012–2022 record shows steady improve-
ments in PM2.5 across the country including the SMA. The lack of trend 
in the 2015–2019 period in the SMA reflected the brevity of the record, 
as seen by the addition of the 2011–2015 years with the AirKorea PM2.5 
RF showing a decrease starting in 2013. Winter decrease after 2019 may 
have been further driven by a seasonal fine dust management program 
launched by the government of Seoul in 2019 that limits vehicle use, 
coal-fired power plants, and industrial activity from December through 
March (Ministry of the Environment, 2019; Yonhap News Agency, 
2021), but also may show an impact from COVID-19 lockdowns (Koo 
et al., 2020).

Fig. 10 expresses the national trends in PM2.5 in terms of population 
exposure. In China, where PM2.5 air quality is worst, we find the greatest 
improvements for the populations exposed to the highest pollution, 
leading to a narrowing spread of exposures across the country that is 

Fig. 5. High tail of the PM2.5 distribution in China, South Korea, and Japan for 2011–2022. The figure shows the mean binned percentiles of the 24-h and annual 
PM2.5 concentrations measured at the surface networks, together with the corresponding mean GOCI PM2.5 predictions sampled at those observed percentiles.
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Fig. 6. GOCI gap-filled aerosol optical depth (AOD), PM2.5 from air quality networks, and GOCI PM2.5 obtained by applying a RF algorithm to the GOCI AOD data. 
Data are annual means for 2012 (the first year with complete GOCI data), 2017, and 2022. The gap-filled AOD data provide continuous 2 × 2 km2 coverage of eastern 
China, S. Korea, and Japan for 2011–2022. The PM2.5 network data are from individual sites and enlarged for visibility. The S. Korea insets in the middle panels 
provide greater resolution of network data gaps. PM2.5 measurements from the AirKorea network started in 2015, and the S. Korea PM2.5 network data shown for 
2012 are from a RF reconstruction as described in Section 2.3.

Fig. 7. Trends in annual mean GOCI PM2.5 concentrations averaged over eastern China, South Korea, and Japan for years with complete data (2012–2022). Also 
shown are the trends from the national PM2.5 networks (dashed black lines) averaged over 2 × 2 km2 grid cells and requiring at least 80% of data for a given year. 
Surface network data in South Korea prior to 2015 are generated from the AirKorea PM2.5 RF using PM10 and other covariates (Table 1). GOCI PM2.5 are shown as 
averages weighted by area, population, and land type.
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Fig. 8. Annual mean GOCI PM2.5 in Beijing compared with US embassy PM2.5 observations in individual years. The left panels show the distribution of PM2.5 in the 
city of Beijing (centered black outline) and surrounding area, with the location of the US embassy shown as a black circle. The right panel shows long-term trends at 
the US embassy site and averaged within Beijing city limits.

Fig. 9. Trends in PM2.5 concentrations in South Korea. Panels in the top row show annual trends for (a) 2015–2019 and (b) 2012–2022. The trends are obtained by 
ordinary linear regression of the annual mean GOCI PM2.5 in each 2 × 2 km2 grid cell with significant regression slope (p< 0.10). Grid cells with insignificant trends 
are plotted in gray. The bottom panel shows population-weighted GOCI PM2.5 concentrations in Seoul and Incheon. Lines represent monthly (solid blue line), DJF 
(black dotted), JJA (black dashed), and annual (black solid) mean concentrations. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)
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illustrated by the sharpening slope of the cumulative distribution. While 
in 2014 97% of the population in China within the GOCI domain was 
exposed to annual PM2.5 exceeding the national ambient air quality 
standard (NAAQS; 35 μg m− 3), by 2022 the figure declined to 29%. 
However, over 99% of the population was still exposed to annual PM2.5 
greater than 15 μg m− 3, the NAAQS in Japan and South Korea. In 2022 
in South Korea 92% of the population still was exposed to annual PM2.5 
greater than the NAAQS but all would have met the pre-2018 NAAQS of 
25 μg m− 3. Japan was fully compliant with its NAAQS by 2018 and its air 
quality has continued to improve since, consistent with an observed shift 
from urban to marine aerosols over the study period (Kobayashi et al., 
2023). Across the domain, the maximum to which any population is 
exposed decreases everywhere, which means that no population has 
been left behind in the improvements in PM2.5 air quality.

The 2 × 2 km2 resolution of our new GOCI PM2.5 product (compared 
to 6 × 6 km2 in Pendergrass et al. (2022)) improves the representation of 
urban scale pollution events. This is illustrated in Fig. 11 with a severe 
event in the SMA on 24–29 May 2016 previously shown by Pendergrass 

et al. (2022). Extreme concentrations and local gradients are better 
represented in the new product. Over the six-day period for the shown 
sites, we find an overall R2 of 0.97 versus observations as compared with 
0.77 for the 6 × 6 km2 product in part because the resolution is now 
sharp enough to individually resolve all sites. A two-sample Kolmogor-
ov-Smirnov test indicates that the 6 × 6 km2 product has a statistically 
significantly different distribution than the observations (p < 0.001) 
while the improved 2 × 2 km2 product is indistinguishable (p = 0.52).

4. Conclusions

We produced a continuous 24-h data set of fine particulate matter 
(PM2.5) concentrations over East Asia at 2 × 2 km2 resolution for 
2011–2022 by training a random forest (RF) machine learning algo-
rithm on GOCI I and II geostationary satellite observations of aerosol 
optical depth (AOD) to predict PM2.5 observations from surface net-
works. The resulting GOCI PM2.5 dataset offers high-resolution coverage 
of the region over a twelve-year period of rapid change. It improves on 

Fig. 10. Trends in cumulative population exposure in countries within the study domain. The y axis shows the cumulative populations exposed to at least the annual 
PM2.5 level given on the x axis, with year indicated by color. Panel (a) shows Eastern China, (b) South Korea, and (c) Japan. Note different scales for the different 
panels. National ambient air quality standards (NAAQS) are shown in the vertical black dotted line. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.)

Fig. 11. 24 h PM2.5 concentrations during a pollution event in the Seoul Metropolitan Area (24–29 May 2016). Observations from the AirKorea surface network 
(circles) are overlaid on GOCI PM2.5 produced in this work (2 × 2 km2 grid). Seoul city limits are shown by the black outline in the panel center.
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our previous GOCI PM2.5 product (Pendergrass et al., 2022) in spatial 
resolution, record duration, and RF method.

We produced the GOCI PM2.5 data in a three-step process. First, we 
gap-filled missing GOCI I and II AOD retrievals using an RF algorithm 
trained on covariates including gap size, chemical transport model 
(CTM) output, meteorology, and land use variables. Second, to train on 
the GOCI I data starting in March 2011, before the start of PM2.5 
monitoring in South Korea (2015), we trained another RF to predict 
2011–2014 PM2.5 at AirKorea network sites using the pre-2015 data 
available at those sites and most notably PM10. Finally, we used the gap- 
filled GOCI AOD along with the target PM2.5 set expanded by the 
inferred 2011–2014 AirKorea PM2.5 and US embassy and consulate data 
in pre-2014 China to train an RF to predict PM2.5 across the study 
domain. Our approach used a weighting scheme to handle uneven 
observation density in time and space, and in the future this approach 
could be extended to weight observations by other criteria such as 
monitor accuracy and representativeness for a given region.

The continuous 2011–2022 GOCI PM2.5 record at 2 × 2 km2 reso-
lution constructed in this manner reproduces the PM2.5 network obser-
vations with no significant bias and a relative root-mean-square error 
(RRMSE) of 22% for 24-h data and 10% for annual data. Its success 
extends to the high tail of the PM2.5 frequency distribution (severe 
pollution episodes). It shows that the air quality networks in all three 
countries are representative of population-weighted exposure. The 
2012–2022 full-year time series show PM2.5 peaking in 2014 (China) 
and 2013 (South Korea and Japan) and then steadily declining through 
the end of 2022 with steepest improvements in the most polluted re-
gions. Population exposure over that period decreases for all quantiles of 
the distributions, implying that no region has been left behind in air 
quality improvement. While the Seoul Metropolitan Area (SMA) does 
not show a decrease over the first five years of the PM2.5 network record 
(2015–2019), the longer 2012–2022 record shows a decline consistent 
with the rest of the country.

The 2 × 2 km2 resolution of our GOCI PM2.5 product enables suc-
cessful representation of the fine-scale structure and statistical distri-
bution of concentrations during urban pollution episodes, improving 
significantly on our previous 6 × 6 km2 product that had excessive 
smoothing. It should be of value for long-term public health studies 
where continuity of PM2.5 data is essential.
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